Nullius In Verba
  • Preuves de la Désintégration du Boson de Higgs en Quarks

    Posté le 2 août 2017

    Le Modèle Standard fait des prédictions très précises sur la manière dont le Boson de Higgs interagit avec différentes particules. Les premières observations étaient basées sur les mesures de sa désintégration en d’autres bosons (W,Z,γ). Maintenant, les chercheurs de la collaboration ATLAS viennent de montrer comment le Higgs se désintègre directement en fermions tels que les quarks et les leptons, la famille de particules fondamentales qui composent la matière.

    Jusqu’à maintenant les chercheurs ont pu prouver la désintégration du Boson de Higgs en photons, leptons tau et bosons W et Z. Cependant, cela ne représente que 30% des désintégrations. La désintégration en quarks bottom (H→bb) qui devrait pourtant se produire avec le taux le plus élevé (environ 58% d’après le Modèle Standard) n’avait jamais été observée. La raison est qu’il est très difficile de la distinguer des processus similaires d’arrière plan (qui pourraient s’assimiler à un “bruit de fond”) : les paires de quark bottom sont créées 10 millions de fois plus souvent que les désintégrations H→bb.

    Les physiciens de la collaboration ATLAS ont donc cherché les désintégrations H→bb qui sont créées en association avec une autre particule, dans ce cas il s’agit d’un boson vecteur (W ou Z). Les désintégrations plus reconnaissables des bosons vecteurs permettent de réduire le bruit de fond. Cela conduit à un taux de production beaucoup plus faible (environ 30,000 désintégrations H→bb devraient avoir été produites de cette manière) mais fournit une opportunité de repérer cette désintégration insaisissable.

    Lire la suite de cette entrée »

  • Exploration de la Manière dont le Boson de Higgs Interagit avec les Autres Bosons

    Posté le 1 août 2017

    Depuis son dernier redémarrage le LHC a produit environ 20000 Bosons de Higgs par jour lors des collisions Proton-Proton à 13 TeV. Fin 2015, les données collectées par les collaborations ATLAS et CMS étaient déjà suffisantes pour de nouvelles observations du Higgs Boson à de nouvelles énergies de collision. Maintenant, avec plus de 36000 trillions de collisions entre 2015 et 2016, l’expérience ATLAS peut effectuer des mesures toujours plus précises du Boson de Higgs.

    Mesurer la manière dont le Boson de Higgs est produit et comment il se désintègre est l’un des objectifs majeurs des expériences du LHC. Une plus grande précision de ces mesures permet aux chercheurs d’affiner la compréhension du secteur de Higgs du Modèle Standard, et également de contraindre les nouveaux phénomènes au-delà du Modèle Standard qui modifieraient le couplage du Higgs avec d’autres particules du Modèle Standard.

    En étudiant les désintégrations du boson de Higgs en paires de photons (H→γγ) et en 4 leptons via des bosons Z intermédiaires (H→ZZ*→4ℓ, où le “*” indique que l’un des bosons Z est produit en dehors de sa couche de masse [“produced off its mass shell” = produite hors couche de masse], c’est à dire qu’il s’agit d’une particule virtuelle), l’expérience ATLAS peut mesurer les propriétés de couplage du Boson de Higgs avec une précision sans précédent.

    Au LHC, le Boson de Higgs est produit via différents processus à des taux très différents : fusion de gluon, fusion de boson vecteur, WH, ZH, et ttH. Pour sonder ces modes de production, ATLAS a introduit un jeu de critères pour caractériser les évènements de Higgs avec états finaux H→γγ et H→ZZ*→4ℓ. Vous pouvez voir les résultats de cette étude sur les graphiques 1 et 2 où la section transversale, normalisée à la valeur prédite par le Modèle Standard, est montrée.

    Lire la suite de cette entrée »

  • Un Effet Gravitationnel du Big Bang a été Observé dans un Cristal de Laboratoire

    Posté le 25 juillet 2017

    Un effet exotique de la physique des particules qui a été théorisé comme se produisant dans d’immenses champs gravitationnels (près d’un trou noir ou dans les conditions qui régnaient juste après le Big Bang) a été observé dans un matériau en laboratoire (cristaux de phosphure de niobium).

    Ce matériau est un semimétal qui a été synthétisé par des collaborateurs à l’Institut Leibniz de recherche sur les états solides et les matériaux de Dresde (IFW) et à l’Institut Max-Planck de physique et chimie des solides à Dresde, en Allemagne. Après avoir réalisé l’expérience et effectué des mesures dans un laboratoire équipé d’un cryostat à l’Université de Hambourg, une équipe de théoriciens de TU Dresden, UC Berkeley et de l‘Instituto de Fisica Teorica UAM/CSIC à Madrid a confirmé par modèles mathématiques qu’ils ont observé un effet de mécanique quantique, connu sous le nom d’anomalie gravitationnelle axiale, qui viole les lois de conservation classiques telles que les lois de conservation de la charge, de l’énergie et de la quantité de mouvement.

    Les symétries sont le Saint Graal des physiciens. La symétrie signifie que l’on peut bouger un objet de telle ou telle manière sans que ses propriétés n’en soient affectées. Par exemple, lorsque vous tournez une balle uniforme sur elle-même, de quelque angle que ce soit, elle a toujours la même apparence.

    Quand une symétrie existe en physique classique mais est brisée une fois que la théorie est quantifiée, on parle d’anomalie.

    Durant la plus grande partie de leur histoire, ces anomalies quantiques ont été confinées au monde de la physique des particules élémentaires exploré dans des accélérateurs de particules tels que le LHC du CERN. Maintenant, cependant, de nouveaux types de matériaux appelés semimétaux de Weyl (similaires au graphème mais en 3D) permettent de révéler le fonctionnement d’anomalies quantiques de destruction de symétrie dans des phénomènes de la vie quotidienne tels que la création de courant électrique.

    Lire la suite de cette entrée »

  • Comment fonctionne le LHC ?

    Posté le 15 mai 2017

    L’animation ci-dessous commence avec une vue aérienne du CERN (près de Genève) qui montre le complexe d’accélérateurs de particules : le LHC et les 4 principaux détecteurs que sont ALICE, ATLAS, CMS et LHCb.

    Tout commence avec une source de protons qui est une simple bouteille d’hydrogène. Un champ électrique est appliqué pour retirer les électrons de l’hydrogène et ainsi produire des protons qui passent ensuite par le LINAC 2, le premier accélérateur de la chaine (qui sera bientôt remplacé par le LINAC 4). Il accélère les protons à une énergie de 50 MeV.

    Le faisceau est ensuite injecté dans le Proton Synchroton Booster (PSB), qui accélère les protons à 1,4 GeV, puis dans le Proton Synchroton (PS) qui les accélère à 25 GeV. Les protons sont ensuite envoyés dans le Super Proton Synchroton (SPS) où ils sont accélérés à 450 GeV pour finalement être transférés dans les 2 tubes de faisceau du LHC.

    Lire la suite de cette entrée »

  • Comment Mesure-t-on le Rayon d’un Proton ?

    Posté le 16 septembre 2016

    Proton-illustrationUn proton est une particule qui contient 3 quarks chargés (2 quarks up et un quark down) liés par la force nucléaire forte.

    La notion de taille pour une particule comme le proton, qui est dans le domaine de la physique quantique, est difficile à définir. Mais il y a 2 manières classiques de mesurer son rayon : par diffusion des électrons d’un atome d’hydrogène ou en regardant de très près la différence entre certains niveaux d’énergie de l’atome d’hydrogène (cette différence est appelée décalage de Lamb)

    Le décalage de Lamb est la différence d’énergie entre les 2 niveaux de l’atome d’hydrogène, notés 2S1/2 et 2P1/2. Il est dû à l’interaction entre les fluctuations quantiques du vide et l’électron de l’hydrogène. Il a été découvert en 1930 par Willis Lamb. Ce décalage d’énergie est si faible qu’il est très sensible au rayon du proton.

    Le rayon du proton, qui est défini comme la distance à laquelle la densité de charge descend en dessous d’une certaine valeur, est estimé à 0,8751 femtomètres.

    Lire la suite de cette entrée »