Nullius In Verba
  • Comment fonctionne le LHC ?

    Posté le 15 mai 2017

    L’animation ci-dessous commence avec une vue aérienne du CERN (près de Genève) qui montre le complexe d’accélérateurs de particules : le LHC et les 4 principaux détecteurs que sont ALICE, ATLAS, CMS et LHCb.

    Tout commence avec une source de protons qui est une simple bouteille d’hydrogène. Un champ électrique est appliqué pour retirer les électrons de l’hydrogène et ainsi produire des protons qui passent ensuite par le LINAC 2, le premier accélérateur de la chaine (qui sera bientôt remplacé par le LINAC 4). Il accélère les protons à une énergie de 50 MeV.

    Le faisceau est ensuite injecté dans le Proton Synchroton Booster (PSB), qui accélère les protons à 1,4 GeV, puis dans le Proton Synchroton (PS) qui les accélère à 25 GeV. Les protons sont ensuite envoyés dans le Super Proton Synchroton (SPS) où ils sont accélérés à 450 GeV pour finalement être transférés dans les 2 tubes de faisceau du LHC.

    Lire la suite de cette entrée »

  • Comment Mesure-t-on le Rayon d’un Proton ?

    Posté le 16 septembre 2016

    Proton-illustrationUn proton est une particule qui contient 3 quarks chargés (2 quarks up et un quark down) liés par la force nucléaire forte.

    La notion de taille pour une particule comme le proton, qui est dans le domaine de la physique quantique, est difficile à définir. Mais il y a 2 manières classiques de mesurer son rayon : par diffusion des électrons d’un atome d’hydrogène ou en regardant de très près la différence entre certains niveaux d’énergie de l’atome d’hydrogène (cette différence est appelée décalage de Lamb)

    Le décalage de Lamb est la différence d’énergie entre les 2 niveaux de l’atome d’hydrogène, notés 2S1/2 et 2P1/2. Il est dû à l’interaction entre les fluctuations quantiques du vide et l’électron de l’hydrogène. Il a été découvert en 1930 par Willis Lamb. Ce décalage d’énergie est si faible qu’il est très sensible au rayon du proton.

    Le rayon du proton, qui est défini comme la distance à laquelle la densité de charge descend en dessous d’une certaine valeur, est estimé à 0,8751 femtomètres.

    Lire la suite de cette entrée »

  • Une nouvelle particule hypothétique pourrait solutionner 2 problèmes majeurs de la physique des particules

    Posté le 15 septembre 2016

    particule_hypothetique

    Dans un article publié dans Physical Review Letters, les physiciens Yu-Sheng Liu, David McKeen, et Gerald A. Miller de l’University of Washington à Seattle ont émis l’hypothèse d’une nouvelle particule.

    Cette hypothèse est très attrayante parce qu’elle pourrait solutionner 2 problèmes majeurs : l’énigme du rayon du proton et une divergence dans les mesures du moment magnétique anomal du muon qui diffèrent des prédictions du Modèle Standard de manière significative.

    Les physiciens décrivent cette nouvelle particule hypothétique comme un boson scalaire électrophobique. Il y a actuellement 5 bosons dans le Modèle Standard dont un seul est scalaire (le boson de Higgs), ce qui signifie qu’il a un spin de 0. Ces 5 bosons ont été confirmés expérimentalement. Ce sont des porteurs de force qui jouent un rôle dans la cohésion de la matière.

    Une des caractéristiques de cette nouvelle particule hypothétique est que, malgré le fait qu’elle devrait se lier aux protons et aux neutrons, elle ne se lierait que très faiblement ou pas du tout aux électrons, la rendant “électrophobique”. Cette propriété permettrait à la particule de résoudre les 2 problèmes cités précédemment.

    Lire la suite de cette entrée »

  • A la Recherche du Monopôle Magnétique

    Posté le 22 août 2016

    Monopole_Magnetique-02Prédit par la physique quantique, le monopôle magnétique manque encore à l’appel.

    Le monopôle électrique est ce qu’on appelle plus couramment la charge électrique. Les charges électriques opposées s’attirent et les charges électriques identiques se repoussent par l’interaction des champs électriques, qui se dirigent du positif au négatif. Les monopôles électriques existent sous la forme de particules qui possèdent une charge électrique positive ou négative, tels que les protons ou les électrons.

    A première vue, le magnétisme semble analogue à l’électricité : il existe un champ magnétique avec une direction définie comme allant du Nord au Sud. Cependant nous n’avons pas trouvé la contrepartie magnétique de la charge électrique : nous n’avons jamais observé de monopôles magnétiques.

    Les aimants n’existent que sous la forme de dipôles, avec un Nord et un Sud. Quand on scinde une barre aimantée en 2 on n’obtient pas un Nord et un Sud séparés mais on obtient 2 aimants plus petits avec un Nord et un Sud chacun. Même si vous scindez cet aimant jusqu’à obtenir des particules vous obtenez toujours un dipôle magnétique.

    Lorsqu’on observe le magnétisme dans le monde, ce que l’on voit correspond exactement aux équations de Maxwell, qui décrivent l’unification des champs électriques et magnétiques. Elles ont été publiées par James Maxwell en 1861 et 1862 et sont encore utilisées en ingénierie, dans les télécommunications, pour les applications médicales, etc. Mais une de ces équations, la loi du magnétisme de Gauss, stipule qu’il n’existe pas de monopôles magnétiques.

    Le magnétisme que l’on observe dans la vie de tous les jours peut être attribué au mouvement des charges électriques. Lorsqu’une particule chargée électriquement se déplace le long d’un chemin, tel qu’un électron se déplaçant le long d’un cable, il génère un courant électrique. Ce courant induit un champ magnétique qui l’entoure.

    La 2ème cause du magnétisme implique une propriété de la mécanique quantique appellée “spin”. On peut y penser comme une particule électriquement chargée en rotation autour d’un axe plutôt que se déplaçant dans une direction particulière. Cela génère un moment angulaire (ou moment cinétique) dans la particule qui fait se comporter l’électron comme un dipôle magnétique (un petit aimant). Cela signifie que l’on peut décrire le phénomène magnétique sans avoir recours aux monopôles magnétiques.

    Mais ça n’est pas parce que nos théories de l’électromagnétisme classique correspondent à nos observations que cela implique nécessairement que les monopôles magnétiques n’existent pas.

    Lire la suite de cette entrée »

  • L’expérience de pensée du Chat de Schrödinger expliquée simplement

    Posté le 15 août 2016

    Schrodinger_chat-illustrationLe Chat de Schrödinger est une expérience de pensée imaginée en 1935 par le physicien autrichien Erwin Schrödinger (Prix Nobel de Physique en 1933).

    Elle illustre les failles d’une interprétation de la superposition quantique lorsqu’elle est appliquée aux objets de la vie de tous les jours. L’interprétation dite “de Copenhague” de la mécanique quantique stipule qu’une particule existe dans tous les états possibles jusqu’à ce qu’elle soit observée. Erwin Schrödinger voulait démontrer l’absurdité de cette interprétation.

    Cette expérience de pensée est assez simple :
    Un chat est placé dans une boite en acier qui contient un dispositif comprenant une substance radioactive, un compteur Geiger et un flacon de poison (contenant du Cyanure d’hydrogène). Si un seul atome de cette substance se désintègre, le compteur Geiger le détecte et déclenche un mécanisme qui brise le flacon et tue le chat. La source radioactive a une probabilité de désintégration de 50% par heure. Après une heure, la probabilité que le chat soit mort est égale à la probabilité que le chat soit vivant.

    Schrodinger_cat

    Lire la suite de cette entrée »